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AN EXPERIMENTAL INVESTIGATION OF THE DYNAMIC BEHAVIOR O F  THE 

LIQUID-VAPOR IPIERFACE UNDER ADVERSE 

LOW -GRAVITATIONAL CONDITIONS 

by W i l l i a m  J. Masica and Jack A. Salzman 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

INTRODUCTION 

The demand f o r  optimum solutions t o  the  problems associated with space- 

vehicle propellant systems has generated considerable i n t e r e s t  i n  the  f i e l d  

of liquid-vapor in te r face  dynamics. 

the  subject  of propellant behavior during the powered phase of the  f l i g h t  

has reached voluminous proportions, only recent ly  has ser ious discussion con- 

s idered the  gross motion of the  propellant under conditions of l o w  gravity- 

induced environments. 

are indeed dependent on a knowledge of the former aspects of propellant be- 

havior, but the fu r the r  requirements of r e l i a b l e  r e s t a r t  capab i l i t i e s  and 

adequate venting charac te r i s t ics  following durations of weightlessness en- 

However, while the  a t t en t ion  given t o  

The cont ro l  and s t a b i l i t y  of the f l i g h t  of the  vehicle 

. 

countered i n  coasting f l ight have made the  l a t e r  

induced hydrodynamics equal i n  significance . 
The NASA L e w i s  Research Center i s  current ly  

ves t iga t ions  of the  behavior of the liquid-vapor 

aspect of low gravity- 

conducting experimental in- 

in t e r f ace  under the in f lu -  

ence of low accelerat ion environments. The purpose of t h i s  paper is  t o  pre-' 

s en t  t h e  r e s u l t s  of several  phases of these invest igat ions.  I n  par t icu lar ,  

the s t a b i l i t y  cha rac t e r i s t i c s  of t he  interface,  the quant i ta t ive  description 

of the  motion of the  interface,  and the mechanism of reor ien ta t ion  or  col lec-  

t i o n  i n  response t o  adverse constant t rans la t iona l  accelerat ions w i l l  be 

discussed. 

TMX-52095 
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SYMBOLS 

a system accelerat ion,  cm/sec 2 

aL interface leading edge acceleration, cm/sec 2 

Bo Bond number 

R cylinder radius ,  cm 

VL 

v0 
p l iqu id  densi ty ,  @/em3 

u surface tension, dynes/cm 

instantaneous ve loc i ty  of leading edge , cm/sec 

r a t e  o f  vapor penetration, cm/sec 

. 
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FAClLITY 

To provide the proper environment fo r  the creat ion of t he  low-gravity 

a f i e l d s  with the liquid-vapor in te r face  approaching i t s  quiescent zero- 

grav i ty  configuration, t he  investigations were conducted i n  a 2.3-second 

drop-tower f a c i l i t y .  The low accelerations were imposed on the  experiuient 

by means of a fast-response gaseous t h r u s t  system ca l ibra ted  011 the  ground 

by a combined load-cel l ,  a i r -bear ing stand. The center of mass of the ex- 

periment package was located along the  thrus t  ax is ,  acd. the  experiments 

were carefu l ly  aligned so  t h a t  the  adverse low accelerat ion was  p a r a l l e l  t o  

the  longi tudinal  ax i s  of the  container and was directed normally from the  

vapor t o  the  l i qu id  phase. 

low 

designed with a high weight-to-frontal-area r a t i o  and l o w  drag coeff ic ient  

A i r  drag on the  experiment package i s  kept be- 

g by allowing the package t ; ~  f a l l  inside a protect ive drag sh ie ld ,  

and modified by the  use of interchangeable spacers t o  accomodate the added 

r e l a t i v e  displacement of the  accelerated package. 

sh ie ld  and experiment package assembly and the  sequence of the  t e s t  drop 

a re  shown i n  f igure  1. 

A schenatic of the  drag 

I 

The magnitudes of the  low accelerat ions i n  these pTograms ranged from ap- 

proximately 0 .1  t o  0.01 g and could be determined by the gr0w-d ca l ibra t ion  tech- 

nique t o  within 4 percent. 

by observing the  net accelerated time i n  the  known avai lable  distance i n  the 

drag sh ie ld . )  L i m i t s  t o  the a t ta inable  accelerat ion l eve l s  were imposed by 

p r a c t i c a l  drag-shield spacer additions and reasonable accelerat ion time i n  which 

t o  observe data. Further l imi ta t ions  on the  maximum radial dimension of the ex- 

(This value could be sutxtari t iated during the  t e s t  

periment geometry, due not t o  absolute s i ze  but r a the r  t o  zero-gravity formation 
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periods (an e f f e c t  t o  be discussed on p. 7 ), r e s t r i c t e d  a t t a inab le  Bond 

numbers t o  less than 100. 

The l iquids  employed i n  the  inves t iga t ion  were ana ly t ic  reagent grade 

and were r e s t r i c t e d  t o  zero-degree contact  angles on the containment surfaces.  

To insure perfect  wetting, elaborate cleaning procedures were adopted, and 

contamination of the l i qu ids  and s o l i d  surfaces w a s  ca refu l ly  avoided. 

more thorough discussion of operating procedure i s  given i n  reference 1. 

A 

CRITICAL BOND NUMBER AND STABILITY OF INTERFACE 

The formulation of the dimensionless Bond number grouping, consis t ing 

e s sen t i a l ly  of the  r a t i o  of accelerat ion t o  cap i l l a ry  forces ,  has l ed  t o  the  

successful cor re la t ion  of t he  magnitude of acce lera t ion  required t o  d is rupt  

the establ ished liquid-vapor in te r face  configuration ( r e f s .  1 t o  3).  The 

re ten t ive  property of the  cap i l l a ry  forces  provides a region of s t a b i l i t y  i n  

which the  liquid-vapor in te r face ,  though deformed, remains s t a t i c  under the  

influence of adverse grav i ta t iona l  or acceleration-induced forces .  The 

subject has a t t r a c t e d  the  academic i n t e r e s t  of many inves t iga tors ,  but even i n  

view of i t s  apparent popularity,  de t a i l ed  s tudies  of the phenomenon have been 

lacking. With perhaps two exceptions (refs.  4 and 5 ) ,  only recent ly  have the  

addi t iona l  var iables  of edge e f f ec t s ,  contact angles and hys te res i s ,  geametries 

other than, cy l indr ica l ,  and conclusive experimental v e r i f i c a t i o n  of t he  fundamental 
concepts been considered. 

The c r i t i c a l  Bond number del ineat ing t h e  s t ab le  and unstable regions of 

the  interface i n  cylinders was shown t o  be independent of t h e  appl ied acce lera t ion  . 

f i e l d  and was ve r i f i ed  t o  be 0.84 for solid-liquid-vapor systems possessing 

zero-degree contact angles exhib i t ing  no h y s t e r e s i s  (ref.  1) : 

. 
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I where the  densi ty  of the vapor phase has been neglected. 

Experimental evidence supporting the v a l i d i t y  of these conclusions i s  

shown i n  f igure  2 where cor re la t ion  of data  obtained both i n  normal grav i ty  

and low acceleration-ihduced environments has been made with the  graph of 

I equation (1). The procedure used i n  obtaining the data resu l ted  i n  a range 
I 

of cylinder rad i i  i n  which s t a b i l i t y  (no motion of the in te r face)  or in -  

s t a b i l i t y  was observed f o r  each combination of l i qu id  and accelerat ion 

f i e l d .  A s  such, the  c r i t i c a l  radius  was bracketed, with t h e  net deviation 

being as s m a l l  as the  physical observation of the disrupt ion or s t a b i l i t y  

of t he  in te r face  would permit. 

The f a c t  t h a t  t he  c r i t i c a l  Bond number of 0.84 i s  independent of t he  

accelerat ion f i e l d  ( O f  course, the  other parauieters must then change t o  keep t h e  

r e l a t i o n  constant.)  i s  not r e a l l y  astonishing i n  view of the  nature of the 

surface-tension s t ab i l i z ing  parameter. Such statements, however, we only 

made, f o r  r a the r  obvious reasons, a f t e r  ver i f ica t ion .  The f a c t  i s  s ign i f icant  

from two viewpoints. F i r s t ,  t he  scaling of equation (1) t o  ac tua l  vehicle 

tank dimensions can now be made with cer t i tude.  Second, the  Bond number i t s e l f  

gains s t a tu re  as the  proper descriptive indicat ion of environmental condition. 

It i s  i n  t h i s  last regard t h a t  the phrase "low-acceleration" environment must 

be used with reservation. 

PLDVERSF, BOND NUMBERS GW'IER THAN CRITICAL: MOTION O F  THE INTERFACE 

It can be seen from equation (1) that the  accelerat ion required t o  disrupt  

t h e  in t e r f ace  i n  r e a l i s t i c  space-vehicle tanks i s  quite s m a l l ;  however, space 
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Vehicles w i l l  be subjected t o  a number of disturbances of magnitude most 

l i k e l y  t o  exceed the  c r i t i c a l  l e v e l  of allowed accelerat ion.  Various schemes, 

both act ive and passive, have been proposed t o  loca te  the  in te r face  
i n  the presence of these perturbations.  
s m a l l  auxi l ia ry  th rus to r s  designed t o  maintain the  proper or ien ta t ion  of the  

propellant by inducing a low body force environment i s  one popular example 

of ac t ive  locat ing methods. The e f f ic iency  of the  aux i l i a ry  th rus t  method 

i s  dependent on the  r a t i o  of induced Bond number t o  the  Bond number 

r e su l t i ng  from the  extraneous disturbances; an optimum solu t ion  would demand 

that the  auxi l ia ry  thrus tors  should never lose  control  of the in te r face .  

But f o r  missions requir ing long-term coast durations,  t he  continual use of 

these thrus tors  may cause excessive weight pena l t ies ,  thus t h e i r  operation 

may have t o  be reduced t o  intermit tent  durations.  Reliable r e s t a r t  can be 

insured by a combination of co l lec t ion- thrus t  and pump-inlet baf f l ing ;  e f f i c i e n t  

venting charac te r i s t ics ,  however, appear t o  be so l e ly  dependent on the  performance 

of these ullage control  t h rus to r s  t o  repos i t ion  or co l l ec t  t h e  propel lant  

following interface disruption. The dynamic behavior of the in te r face  during 

t h i s  co l lec t ion  mode is  of immediate i n t e r e s t .  

w 

The proposed use of 

I The mode of l i q u i d  flow following the  d is rupt ion  of the  in te r face  i n  a low 

accelerat ion f i e l d  has been noted i n  the c r i t i c a l  Bond number s tud ies  and was  

observed t o  be s i m i l a r  t o  the  g rav i t a t iona l  motion of large (31 diametjer) bubbles 

i n  closed v e r t i c a l  tubes. 

conditions extended the  ex i s t ing  co r re l a t ion  of bubble r i s e  ve loc i ty  through 

a carefu l ly  documented region of Bond numbers ranging from 3.49 t o  1870. 

r a t e  of penetration of the vapor phase i n t o  the l i q u i d  phase f o r  low viscous f l u i d s  

w a s  found t o  be described by the  empir ical ly  derived equation 

An extensive program conducted under normal-gravity 

The 
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13) 
For Bond numbers s e a t e r  than 12 ,  equation (2) reduces t o  

vo = (0.48)(aR)1/2 

or  the  form predicted by the  inviscid poten t ia l  theory of G. I. Taylor 

_(ref. 6 ) .  

intermediate Bond numbers a t  low gravity a r e  presented i n  figure 3 w i t h  t he  

curve of equation ( 2 ) .  

with the  empirical  equation i s  seen t o  be excel lent ,  including Bond numbers 

approaching one. 

I I 
The NASA experimental data  fo r  la rge  Bond numbers at 1 g and 

Other published data i s  a l s o  shown, and the  agreement 

The extension of the  invest igat ion t o  low gravity-induced environments 

ve r i f i ed  the  v a l i d i t y  of the  above r e s u l t s  i n  terms of a correct  scal ing 

re la t ion .  

by equation (2) .  

imposed accelerat ion of 36.3 cm/sec 

of the observed symmetry of the vapor penetration when adequate zero-gravity 

formation t i m e  and proper t h r u s t  alignment were provided. 

symmetry of t h e  p ro f i l e ,  espec ia l ly  the progression of the  leading edge, was 

extremely sens i t ive  t o  small misalignments i n  accelerat ion direct ion.  

The low-acceleration data  in  f igure  3 are  s a t i s f a c t o r i l y  correlated 

A photograph showing t h e  p ro f i l e  of the  in te r face  under an 
2 

i s  shown i n  f igure  4(a) and i s  typ ica l  

The observed 

It i s  t o  be noted t h a t  the  time allowed f o r  the  formation of the  zero- 

grav i ty  in te r face  configuration was generally not su f f i c i en t  t o  insure completely 

quiescent conditions p r io r  t o  t h e  i n i t i a t i o n  of t he  imposed acceleration. 

f a c t  i s  not t o  be minimized because the formation period represents  an i n i t i a l  

per turbat ion t o  t h e  mode of l iqu id  f low,  and a t r a n s i t i o n  region necessar i ly  

occurs p r io r  t o  steady-state regular  flow. 

This 

The mode shape exci ted by the  sudden 



8 

t r ans i t i on  from 1-g t o  zero gravi ty  resembles, descr ipt ively,  a "hump" 

centered along the  major  ax i s  of t he  cylinder. If su f f i c i en t  time i s  not 

allowed f o r  adequate decay of t h i s  formation mode, subsequent vapor penetration 

r a t e s  w i l l  be severely affected.  

chosen", the imposed accelerat ion w i l l  cause the formation mode t o  grow 

exponentially i n  time i n  the  form of the c l a s s i c  Taylor i n s t a b i l i t y .  The 

competition between formation, t r ans i t i on ,  and regular flow time i n  the  

present 2.3-sec drop-tower f a c i l i t y  r e s t r i c t e d  the  radii of the  cylinders 

t o  a maximum of 4.5 cm. 

I n  f a c t ,  i f  the  formation time i s  "properly 

A s  a resu l t  of these invest igat ions,  it i s  now possible t o  predict  the  

vapor penetration or ullage ve loc i ty  under an imposed co l lec t ion  accelerat ion 

i n  r e a l  vehicle propellant tanks. 

a typ ica l ly  imposed co l lec t ion  accelerat ion of 

ve loc i ty  of s l i g h t l y  greater than 18 cm/sec. 

the  t o t a l  t i m e  required t o  reor ien t  the  propellant (e.g. ,  from the  vent port ion 

of t he  tank) so le ly  from the  above r e s u l t s  because the  s i t ua t ion  presented i s  

quite ideal .  The ullage ve loc i ty  cor re la t ion  given by equation ( 2 )  has been 

obtained i n  unbaffled, f l a t -bo t tmed ,  cy l indr ica l  geametries. In t e rna l  tank 

hardware could a l t e r  the  regular symmetric s tage of propellant flow, and the  

e f f ec t  of tank extremities may reduce the  ve loc i ty  magnitude. 

For tank rad i i  of the  order of 150 cm ( 5  f t )  , 
g w i l l  r e s u l t  i n  an ullage 

However, one should not estimate 

The l a t t e r  

aspect i s  somewhat doubtful because no observable e f f e c t  on the  ullage ve loc i ty  

due t o  the  f l a t  bottom of r i g h t  c i rcu lar  cyl inders  has been noted i n  the  l o w  

accelerat ion studies.  The net adverse e f f e c t  of these two aspects  would be 

a reduction i n  ullage velocity;  therefore ,  equation ( 2 )  represents  a reasonable 

estimate of the ullage ve loc i ty  under a given co l lec t ion  acce lera t ion  even when 
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the  geometry i s  less than ideal .  Time estimates,  however, f o r  complete 

co l lec t ion  s t i l l  cannot be infer red  because of t he  motion of t he  leading 

4 edge of t h e  interface.  

The in te r face  leading edge veloci ty  (VL i n  f i g .  4 ( a ) ) ,  unlike the  

ullage veloci ty ,  is  not constant. The result is  consistent with inviscid 

theory: if the  p r o f i l e s  of t he  interface and ullage ve loc i ty  i n  response 

t o  both i n e r t i a l  and gravi ta t iona l  body force accelerat ions are ident ica l ,  

t he  cont inui ty  equations demand t h a t  the bounded leading edge accelerate  - 
a necessary converse of Taylor's argument. An analysis  of t he  leading edge 

displacement charac te r i s t ics  led t o  the following equation: 
3.8 V g  

R 
aL = f o r  Bo > 1 . 7  (4 )  

where a 

i s  t h e  ullage ve loc i ty  given by equation ( 2 ) .  

the  above equation was based on t h e  ac tua l  ullage ve loc i ty  as observed i n  

each t e s t  and i s  accurate t o  within 10 percent, the  accuracy increasing with 

increasing Bond numbers. 

'is the magnitude of t he  leading edge accelerat ion and L Vo 
The empirical  cor re la t ion  of 

For Bond numbers greater than 1 2  

(5) aL = 0.87 a 

which indicates  a slight departure fram the  idea l  free-fall condition at the w a l l ,  

The leading edge displacement i s  undoubtedly v iscos i ty  dependent but f o r  

low-viscous f l u i d s  of the  order of 1 centipoise and avai lable  accelerat ing 

dis tances  comparable t o  cylinder fineness r a t i o s  of 2, the above r e l a t ions  

a re  v a l i d  within the  s t a t ed  accuracy. 
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PROPEUANT COLLECTION BY LOW ACCELERATION-INDUCED FORCES 

The significance of the  leading edge displacement i s  t h a t  the  instantaneous 

leading edge veloci ty  may be qui te  large when the  l i qu id  eventually converges b 

at the  tank bottom. The re su l t an t  momentum could then cause the  propellant 

t o  rebound or geyser back t o  the  top  of the  tank, and the  attempt a t  col lec-  

t i o n  would merely r e s u l t  i n  c i rcu la t ing  the  propellant.  

prominant geyser i n  flat-bottomed, convex-bottomed (Apollo), and concave- 

bottomed (Centaur and Saturn) geometries and the  subsequent r ec i r cu la t ion  were 

determined qui te  e a r l y  i n  the drop-tower invest igat ions.  It i s  the  presence 

of t h i s  geyser t h a t  cur ren t ly  makes total- t ime estimates of co l lec t ion  

l i t e r a l l y  estimates. 

The presence of a 

The geysering phenomenon i n  the  Bond number region from 10 t o  60 

was qui te  ordered and repeatable with surpr i s ing ly  l i t t l e  turbulence. 

Although d i r ec t  measurements of t he  geyser were impaired both by 

r e f r ac t ion  and cap i l l a ry  waves i n  the  l i q u i d  f i l m  along the tank w a l l ,  some 

geometric observations were evident. The geyser i s  bas i ca l ly  a continuous 

l i qu id  column with a width of between 1/4 and 1 / 2  of the  tank diameter. 

Other than a t  i t s  i n i t i a l  formation, t he  geyser maintains i t s  s i ze  r e l a t i v e  

t o  the  tank, exhibi t ing only s l i g h t  wave motion due undoubtedly t o  Rayleigh 

i n s t a b i l i t y .  Representative photographs of t he  geyser i n  a Centaur geometry 

model are shown i n  f igure  4(b) .  

t o  move at  a constant veloci ty ,  the  magnitude being approximately twice the  in-  

stantaneous leading edge ve loc i ty  calculated a t  tank bottom impingement. 

Further data i s  needed, however, t o  f i rmly e s t a b l i s h  t h i s  cor re la t ion .  

the  geyser reached the  top  of the  model geometry, the  l i qu id  was rec i rcu la ted .  

I n  a l l  instances,  t h e  geyser w a s  observed 

Once 
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Despite the geysering formation and recirculat ion,  l i q u i d  does accumulate a t  

the  bottom of the  tank. 

per un i t  time were estimated, f o r  example, i n  the  Centaur models t o  be as 

high as 1/3. The r e l a t ion ,  however, describing the accumulation r a t e  i s  not 

apparent and su f f i c i en t  t e s t  time is not present ly  avai lable  t o  obtain t o t a l  

accumulation. 

Actual r a t i o s  of l i qu id  accumulation t o  geyser volume 

1 

Obviously, t he  requirements of e f f i c i e n t  venting a re  not compatible with 

the  sever i ty  of the  geyser i n  the  basic co l lec t ion  mode. The re l iance  on 

viscous dimping t o  end the  rec i rcu la t ion  mode would make time durations fo r  

co l lec t ion  excessively long. Methods f o r  eliminating or a t  l e a s t  a l l ev ia t ing  

the  geysering problem consis t  simply of changing the  d i rec t ion  of flow mmentum 

and diss ipa t ing  the  k ine t i c  energy due t o  the  leading edge flow. 

l a t t e r  r e s u l t s  i n  considerable turbulence and s m a l l  bubble formation, 

t h i s  appears t o  be the  only  feasible solution. Deliberate co l lec t ion  

acce lera t ion  misalignment and su i tab le  tank ba f f l e s  were investigated 

as means of impeding and red i rec t ing  the geyser flow. While the  former 

method may not be too p rac t i ca l ,  it does merit  a t t en t ion  because of i t s  

s implici ty .  For example, a 15' t h rus t  misalignment w i t h  t he  major ax is  

of t h e  geometry causes a large angle i n  t he  progression of the  leading 

edge. When the  leading edge converges a t  the tank bottom, the  r e su l t an t  

geyser i s  directed toward the  mll, and the  ensuing ag i t a t ion  causes a 

considerable increase i n  t o t a l  l i qu id  accumulation over symmetrical col-  

l e c t i o n  f o r  i den t i ca l  time in te rva ls .  The geyser, however, w a s  noted 

t o  re-form p a r a l l e l  t o  the co l lec t ion  accelerat ion a f t e r  l i qu id  had been 

accumulated; the  app l i cab i l i t y  i s  only f o r  s m a l l  r es idua l  percentages of 

propel lant .  Var ie t ies  of ba f f l e s  i n  the forms of p l a t e s ,  r ings ,  and s h e l l s  

Although t h e  
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were a l s o  t r i e d  t o  completely eliminate the geysering problem and t o  obtain 

t o t a l  l iqu id  col lect ion.  

was, i n  par t ,  feas ib le ,  and t h a t  any baf f l ing  scheme which would impede and 

r ed i r ec t  the geyser flow d i rec t ion  t o  the  tank w a l l s  or back t o  the  tank 

bottom would cause a subs tan t ia l  increase i n  collected l iqu id .  Once these 

baff les  were covered with accumulated l i qu id ,  however, t h e i r  effect iveness  

was completely l o s t ,  and the  geyser reappeared almost immediately. For 

example, a ring-type ba f f l e ,  placed around the  inverted hemispherical bottom 

of a Centaur model, diverted the  leading edge and caused a reservoir  of l i qu id  

t o  accumulate with no apparent geyser. Shortly a f t e r  the  col lected l i qu id  

had covered the  r ing ,  however, geysering appeared with l i t t l e ,  i f  any, 

reduction i n  severi ty .  

I n  general it w a s  discovered t h a t  the  approach 

Another baf f l ing  technique, which has proven thus far t o  be the  most 

successful,  r e l i e s  on d i s t i n c t  l i qu id  l eve l s  and on an estimate of t he  

res idua l  propellant t o  be collected.  

col lect ion is  attempted, the  l i qu id  l e v e l  i s  above the  angled r i n g  baf f le .  

The col lect ion accelerat ion causes a typ ica l  geysering formation, but once 

the  l i qu id  leve l  drops below the ba f f l e ,  t he  leading edge i s  diverted toward 

the  center of the tank. The geyser flow and t h e  newly directed leading edge 

flow impinge on each other ,  which r e s u l t s  i n  considerable turbulence and 

bubble formation. 

and the  numerous s m a l l  bubbles s e t t l e  out qui te  rapidly.  

r e l a t ions  describing the  leading edge and geyser ve loc i t i e s  were e n t i r e l y  

The method i s  shown i n  f igure  5. Before 

The turbulence , however , i s  an e f fec t ive  d iss ipa t ion  f ac to r  

The previously s t a t ed  

adequate i n  determining the  point of flow impingement. 

f igure  5 of a t e s t  run using t h i s  baff l ing technique shows successful camplete 

l i qu id  reorientat ion despi te  present experimental time l imi ta t ions .  

The photograph i n  
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CONCLUSION 

I n  summary, it may be s ta ted  that the  motion of t he  liquid-vapor 

in te r face  i n  response t o  low acceleration-induced forces  can be pre- 

dicted; however, accurate t i m e  estimates of complete propellant re- 

or ien ta t ion  or col lec t ion  cannot present ly  be made because of t he  geysering 

phenomena. 

e f fec t ive ,  but they  r e s u l t  i n  considerable propellant ag i t a t ion  with possible 

concurrent vehicle control  problems. 

Baffling techniques designed t o  obtain co l lec t ion  can be 
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Figure 1. - Schematic drawing showing sequential position of experiment package and drag 
shield before, during, and after test drop. 
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Figure 2. - Interface stability delineated by Bond number criterion. 
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Figure 3. - Experimental correlation of vapor penetration rate with Bond number. 

Acceleration 

(a) Interface profile under imposed acceleration of 36.3 c m l s d .  

Geyser formation Flow pattern Recirculation 

(b) Geyser formation and recirculation in Centaur model geometry. 
Figure 4. - Interface profi le and geyser formation and recirculation. 
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Final configuration dur ing  collection mode 

Figure 5. - Collection i n  baffled Centaur tank geometry. 

NASA-CLEVELAND. OHIO E-2947 


